skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hu, Haojie"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The James Webb Space Telescope has revealed low-luminosity active galactic nuclei at redshifts ofz≳ 4–7, many of which host accreting massive black holes (BHs) with BH-to-galaxy mass (MBH/M) ratios exceeding the local values by more than an order of magnitude. The origin of these overmassive BHs remains unclear but requires potential contributions from heavy seeds and/or episodes of super-Eddington accretion. We present a growth model coupled with dark matter halo assembly to explore the evolution of theMBH/Mratio under different seeding and feedback scenarios. Given the gas inflow rates in protogalaxies, BHs grow episodically at moderate super-Eddington rates, and the mass ratio increases early on, despite significant mass loss through feedback. Regardless of seeding mechanisms, the mass ratio converges to a universal value ∼0.1–0.3, set by the balance between gas feeding and star formation efficiency in the nucleus. This behavior defines an attractor in theMBH–Mdiagram, where overmassive BHs grow more slowly than their hosts, while undermassive seeds experience rapid growth before aligning with the attractor. We derive an analytical expression for the universal mass ratio, linking it to feedback strength and halo growth. The convergence of evolutionary tracks erases seeding information from the mass ratio byz∼ 4–6. Detecting BHs with ∼105−6Mat higher redshifts that deviate from the convergence trend would provide key diagnostics of their birth conditions. 
    more » « less
    Free, publicly-accessible full text available April 15, 2026
  2. We study the long-term evolution of the global structure of axisymmetric accretion flows onto a black hole (BH) at rates substantially higher than the Eddington value (Mdot,Edd)performing two-dimensional hydrodynamical simulations with and without radiative diffusion. In the high-accretion optically-thick limit, where the radiation energy is efficiently trapped within the inflow, the accretion flow becomes adiabatic and comprises of turbulent gas in the equatorial region and strong bipolar outflows. As a result, the mass inflow rate decreases toward the center as Mdot,in∝r_p with p∼0.5−0.7 and a small fraction of the inflowing gas feeds the nuclear BH. Thus, super-Eddington accretion is sustained only when a larger amount of gas is supplied from larger radii at >100−1000 Mdot, Edd. The global structure of the flow settles down to a quasi-steady state in millions of the orbital timescale at the BH event horizon, which is >10−100 times longer than that addressed in previous (magneto-)RHD simulation studies. Energy transport via radiative diffusion accelerates the outflow near the poles in the inner region but does not change the overall properties of the accretion flow compared to the cases without diffusion. Based on our simulation results, we provide a mechanical feedback model for super-Eddington accreting BHs. This can be applied as a sub-grid model in large-scale cosmological simulations that do not sufficiently resolve galactic nuclei, and to the formation of the heaviest gravitational-wave sources via accretion in dense environments. 
    more » « less
  3. Observations of the most luminous quasars at high redshifts (z > 6) have revealed that the largest supermassive black holes (SMBHs) at those epochs tend to be substantially overmassive relative to their host galaxies compared to the local relations, suggesting they experienced rapid early growth phases. We propose an assembly model for the SMBHs that end up in rare massive ∼ 1012 M⊙ host halos at z ∼ 6−7, applying a kinetic feedback prescription for BHs accreting above the Eddington rate, provided by radiation hydrodynamic simulations for the long-term evolution of the accretion-flow structure. The large inflow rates into these halos during their assembly enable the formation of > 109 M⊙ SMBHs by z ∼ 6, even starting from stellar-mass seeds at z ∼ 30, and even in the presence of outflows that reduce the BH feeding rate, especially at early times. This mechanism also naturally yields a high BH-to-galaxy mass ratio of > 0.01 before the SMBH mass reaches MBH > 109 M⊙ by z ∼ 6. These fast-growing SMBH progenitors are bright enough to be detected by upcoming observations with the James Webb Space Telescope over a wide range of redshift (7 < z < 15), regardless of how they were seeded. 
    more » « less